3. Application of Derivatives

- For the curve y = f(x), the slope of tangent at the point (x_0, y_0) is given by $\frac{dy}{dx}\Big|_{(x_0, y_0)}$ or $f'(x_0)$.

- If $f'(x_0)$ does not exist, then the tangent to the curve y = f(x) at the point (x_0, y_0) is parallel to the y-axis and its equation is given by $x = x_0$.
- The equation of normal to the curve y = f(x) at the point (x_0, y_0) is given by, $y y_0 = \frac{-1}{f'(x_0)} (x x_0)$
- If $f'(x_0)$ does not exist, then the normal to the curve y = f(x) at the point (x_0, y_0) is parallel to the x-axis and its equation is given by $y = y_0$.
- If $f'(x_0) = 0$, then the respective equations of the tangent and normal to the curve y = f(x) at the point (x_0, y_0) are $y = y_0$ and $x = x_0$.
- For a quantity y varying with another quantity x, satisfying the rule y = f(x), the rate of change of y with respect to x is given by $\frac{dy}{dx}$ or f'(x)

The rate of change of y with respect to x at the point $x = x_0$ is given by $\frac{dy}{dx}\Big|_{x=x_0}$ or $f'(x_0)$.

- If the variables x and y are expressed in form of x = f(t) and y = g(t), then the rate of change of y with respect to x is given by $\frac{dy}{dx} = \frac{g'(t)}{f'(t)}$ provided $f'(t) \neq 0$
- Let y = f(x) and let Δx be a small increment in x and Δy be the increment in y corresponding to the increment in x i.e., $\Delta y = f(x + \Delta x) - f(x)$

Then, dy = f'(x)dx or $dy = \left(\frac{dy}{dx}\right)\Delta x$ is a good approximation of Δy , when $dx = \Delta x$ is relatively small and we denote it by $dv \approx \Delta y$.

• Rolle's Theorem:

If $f: [a, b] \to \mathbf{R}$ is continuous on [a, b] and differentiable on (a, b) such that f(a) = f(b), where a and b are some real numbers, then there exists some $c \in (a, b)$ such that f(c) = 0

Example: Verify Rolle's Theorem for the function:

$$f(x) = 2x^2 - 17x + 30 \text{ in the interval } \left[\frac{5}{2}, 6\right].$$

Solution:

$$f(x) = 2x^2 - 17x + 30$$

 $\therefore f(x) = 4x - 17$

The function f(x) being a polynomial, is continuous on $\left[\frac{5}{2}, 6\right]$ and is differentiable on $\left(\frac{5}{2}, 6\right)$.

Also,
$$f\left(\frac{5}{2}\right) = 2\left(\frac{5}{2}\right)^2 - 17\left(\frac{5}{2}\right) + 30 = 0$$

And,
$$f(6) = 2(6)^2 - 17 \times 6 + 30 = 0$$

$$\therefore f\left(\frac{5}{2}\right) = f(6)$$

And, $f(6) = 2(6)^2 - 17 \times 6 + 30 = 0$ $\therefore f(\frac{5}{2}) = f(6)$ Therefore, we can apply Rolle's Theorem for f(x).

According to this theorem, there exists $c \in (\frac{5}{2}, 6)$ such that f'(c) = 0We have f'(x) = 4x - 17

$$\therefore f'(c) = 0$$

$$\Rightarrow 4c - 17 = 0$$

$$\Rightarrow c = \frac{17}{4} \in \left(\frac{5}{2}, 6\right)$$

Therefore, Rolle's Theorem is verified.

• Mean value theorem:

If $f: [a, b] \to \mathbf{R}$ is continuous on [a, b] and differentiable on (a, b), then there exists some $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

Example: Verify Mean Value Theorem for the function:

$$f(x) = 2x^2 - 17x + 30 \text{ in the interval } \left[\frac{5}{2}, 6\right]$$

Solution:

$$f(x) = 2x^2 - 17x + 30$$

$$f'(x) = 4x - 17$$

The function f(x) being a polynomial, is continuous on $\left[\frac{5}{2}, 6\right]$ and is differentiable on $\left(\frac{5}{2}, 6\right)$. Also, $f\left(\frac{5}{2}\right) = 2\left(\frac{5}{2}\right)^2 - 17\left(\frac{5}{2}\right) + 30 = 0$

Also,
$$f\left(\frac{5}{2}\right) = 2\left(\frac{5}{2}\right)^2 - 17\left(\frac{5}{2}\right) + 30 = 0$$

And,
$$f(6) = 2(6)^2 - 17 \times 6 + 30 = 0$$

$$\therefore f\left(\frac{5}{2}\right) = f(6)$$

$$\int_{0}^{1} \frac{f(6) - f(\frac{5}{2})}{6 - \frac{5}{2}} = 0$$

According to Mean Value Theorem (MVT), there exists $c \in (\frac{5}{2}, 6)$ such that f(c) = 0

$$\therefore 4c - 17 = 0$$

$$\Rightarrow c = \frac{17}{4} \in \left(\frac{5}{2}, 6\right)$$

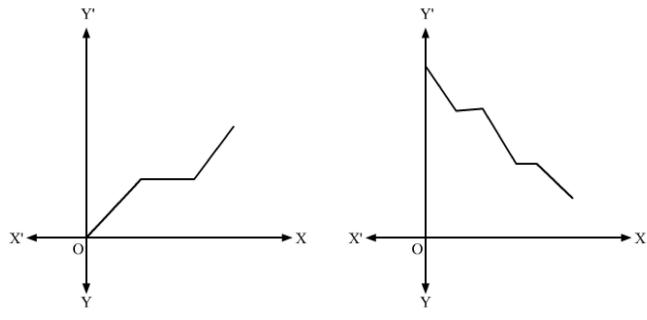
Therefore, M.V.T is verified.

- a. A function $f:(a,b) \to \mathbf{R}$ is said to be
- increasing on (a, b), if $x_1 < x_2$ in (a, b)
- decreasing on (a, b), if $x_1 \le x_2$ in (a, b)

OR

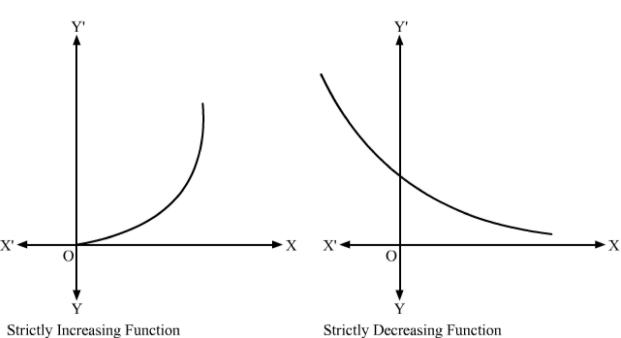
If a function f is continuous on [a, b] and differentiable on (a, b), then

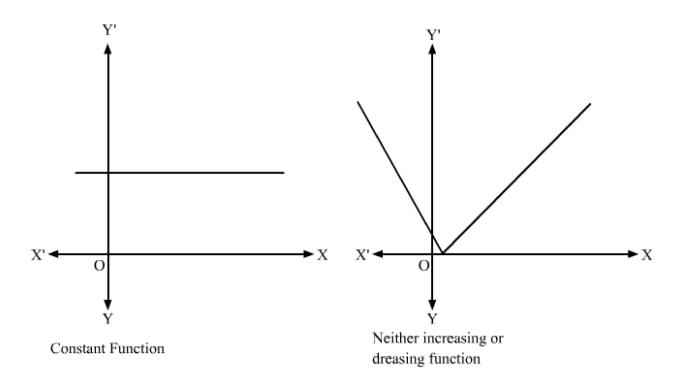
- f is increasing in [a, b], if f'(x) > 0 for each $x \in (a, b)$
- f is decreasing in [a, b], if f'(x) < 0 for each $x \in (a, b)$
- *f* is constant function in [a, b], if f(x) = 0 for each $x \in (a, b)$
- a. A function $f:(a,b) \to \mathbf{R}$ is said to be
 - strictly increasing on (a, b), if $x_1 < x_2$ in $(a, b) \Rightarrow f(x_1) < f(x_2) \ \forall \ x_1, x_2 \in (a, b)$
 - strictly decreasing on (a, b), if $x_1 \le x_2$ in $(a, b) \Rightarrow f(x_1) \ge f(x_2) \ \forall \ x_1, x_2 \in (a, b)$
 - a. The graphs of various types of functions can be shown as follows:



Increasing Function

Decreasing Function





Example 1: Find the intervals in which the function f given by $f(x) = \sqrt{3} \sin x - \cos x$, $x \in [0, 2\pi]$ is strictly increasing or decreasing.

Solution:

$$f(x) = \sqrt{3} \sin x - \cos x$$

$$\therefore f'(x) = \sqrt{3}\cos x + \sin x$$

$$f'(x) = 0$$
 gives $\tan x = -\sqrt{3}$

The points $\frac{2\pi}{3}$ $\frac{5\pi}{3}$ and $x = \frac{5\pi}{3}$ divide the interval $[0, 2\pi]$ into three disjoint intervals,

$$\left[0, \frac{2\pi}{3}\right], \left(\frac{2\pi}{3}, \frac{5\pi}{3}\right), \left(\frac{5\pi}{3}, 2\pi\right].$$

Now,
$$f'(x) > 0$$
, if $x \in \left[0, \frac{2\pi}{3}\right] \cup \left(\frac{5\pi}{3}, 2\pi\right]$

f is strictly increasing in the intervals $\left[0, \frac{2\pi}{3}\right]$ and $\left(\frac{5\pi}{3}, 2\pi\right]$.

Also,
$$f'(x) < 0$$
, if $x \in \left(\frac{2\pi}{3}, \frac{5\pi}{3}\right)$

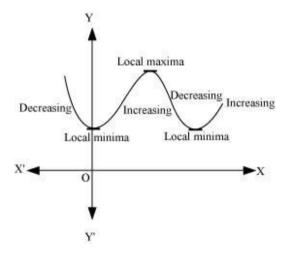
f is strictly decreasing in the interval $\left(\frac{2\pi}{3}, \frac{5\pi}{3}\right)$.

• Maxima and Minima: Let a function f be defined on an interval I. Then, f is said to have

- maximum value in I, if there exists $c \in I$ such that f(c) > f(x), $\forall x \in I$ [In this case, c is called the point of maxima]
- minimum value in I, if there exists $c \in I$ such that f(c) < f(x), $\forall x \in I$ [In this case, c is called the point of minima]
- an extreme value in I, if there exists $c \in I$ such that c is either point of maxima or point of minima [In this case, c is called an extreme point]

Note: Every continuous function on a closed interval has a maximum and a minimum value.

- Local maxima and local minima: Let f be a real-valued function and c be an interior point in the domain of f. Then, c is called a point of
 - local maxima, if there exists h > 0 such that f(c) > f(x), $\forall x \in (c h, c + h)$ [In this case, f(c) is called the local maximum value of f]
 - local minima, if there exists h > 0 such that f(c) < f(x), $\forall x \in (c h, c + h)$ [In this case, f(c) is called the local maximum value of f]



- A point c in the domain of a function f at which either f'(c) = 0 or f is not differentiable is called a critical point of f.
- **First derivative test:** Let *f* be a function defined on an open interval I. Let *f* be continuous at a critical point *c* in I. Then:
 - If f'(x) changes sign from positive to negative as x increases through c, i.e. if f'(x) > 0 at every point sufficiently close to and to the left of c, and f'(x) < 0 at every point sufficiently close to and to the right of c, then c is a point of local maxima.
 - If f'(x) changes sign from negative to positive as x increases through c, i.e. if f'(x) < 0 at every point sufficiently close to and to the left of c, and f'(x) > 0 at every point sufficiently close to and to the right of c, then c is a point of local minima.
 - If f'(x) does not change sign as x increases through c, then c is neither a point of local maxima nor a point of local minima. Such a point c is called point of inflection.
- Second derivative test: Let f be a function defined on an open interval I and $c \in I$. Let f be twice differentiable at c and f'(c) = 0 Then:
 - If f'(c) < 0, then c is a point of local maxima. In this situation, f(c) is local maximum value of f.
 - If f'(c) > 0, then c is a point of local minima. In this situation, f(c) is local minimum value of f.
 - If f'(c) = 0, then the test fails. In this situation, we follow first derivative test and find whether c is a point of maxima or minima or a point of inflection.

Example 1: Find all the points of local maxima or local minima of the function f given by $f(x) = x^3 - 12x^2 + 36x - 4$.

Solution:

We have,

$$f(x) = x^3 - 12x^2 + 36x - 4$$

$$\therefore f'(x) = 3x^2 - 24x + 36 = 3(x^2 - 8x + 12)$$
and $f''(x) = 3(2x - 8) = 6(x - 4)$
Now, $f'(x) = 0$ gives $x^2 - 8x + 12 = 0$

$$\Rightarrow (x - 2)(x - 6) = 0$$

$$\Rightarrow x = 2$$
 or $x = 6$

However,
$$f''(2) = -12$$
 and $f''(6) = 12$

Therefore, the point of local maxima and local minima are at the points x = 2 and x = 6 respectively.

The local maximum value is f(2) = 28

The local minimum value is f(6) = -4

